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ABSTRACT

Robust Constrained Optimization Approach to Control Design for International Space

Station Centrifuge Rotor Auto Balancing Control System

by

Barry Dirk Postma

This thesis discusses application of a robust constrained optimization approach to

control design to develop an Auto Balancing Controller (ABC) for a centrifuge rotor to

be implemented on the International Space Station. The design goal is to minimize a

performance objective of the system, while guaranteeing stability and proper

performance for a range of uncertain plants. The performance objective is to minimize

the translational response of the centrifuge rotor due to a fixed worst-case rotor

imbalance. The robustness constraints are posed with respect to parametric uncertainty in

the plant. The proposed approach to control design allows for both of these objectives to

be handled within the framework of constrained optimization. The resulting controller

achieves acceptable performance and robustness characteristics.
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1 Introduction

The Japanese Aerospace Exploration Agency (JAXA) plans to participate in the

development of the International Space Station (ISS) by providing a centrifuge to be used

for scientific experiments. The centrifuge will be housed in the Centrifuge

Accommodation Module to be assembled with the ISS in the configuration shown in

Figure 1-1 [1].

Centrifuge
Accommodation Module

Figure 1-1. Location of the Centrifuge Accommodation Module

The centrifuge would serve as a home for a number of rodents (or other test

specimen). The rodents are allowed to move within habitats that are housed in the

centrifuge rotor as shown in Figure 1-2.
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Habitt Habitata
Habitat Habitat

DirectionHait
of Spin

Side View of Centrifuge Rotor Top View of Centrifuge Rotor

Figure 1-2. Side/Top View of Rodents in Habitats

Rodent movement within the habitats introduces an imbalance in the rotor that

causes rotor vibration while the rotor is spinning. This imbalance must be cancelled to

avoid the transfer of disturbances from the centrifuge rotor to the ISS. An active control

system must be introduced to cancel imbalances in the rotor.

Methodologies for limiting the vibration of spinning rotors have been presented in

the literature. These methods can be divided into two techniques: direct active vibration

control and active balancing techniques using mass redistribution. Direct active vibration

control uses magnetic bearings that generate an external lateral force on the rotor, while

active balancing uses a mass redistribution device to eliminate the rotor imbalance.

Meirovitch presented an overview of active vibration control in [2]. These methods can

be applied to the direct active vibration control for a spinning rotor. Knopse presented
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extensive work in [3]-[6] using adaptive open-loop control to suppress the rotor vibration

using magnetic bearings as actuators. Herzog presented a method in [7] that also

employed magnetic bearings and used notch filters in the control system. Fan introduced

a vibration control method in [8] for an asymmetrical rotor using magnetic bearings.

The Auto Balancing Controller (ABC) for the centrifuge rotor is classified as a

mass redistribution type of controller. Using mass redistribution techniques, Van De

Vegte first proposed a modal balancing method for the balancing of spinning rotors

during operation [9]. Gosiewski proposed a control method based on modal analysis of

the rotor vibrations using a computer as the controller in [10] and [11]. Dyer and Ni

introduced a balancing method based on influence coefficients to achieve on-line

estimation and active control [12]. Many of these methods were developed for the case

of a constant rotational rotor speed. More recently, Zhou and Shi developed several

balancing methods for speed-varying rotors presented in [13]-[15]. A thorough summary

of work in the area of active balancing and vibration control of rotor systems is presented

in [16]. In those methods, it is assumed that a rotor speed is either known or estimated

exactly; the issue of control system robustness is never addressed. It is important to

account for the linear-time varying dynamics of the rotor when using these approaches.

In this thesis, a constrained optimization approach is proposed to design an ABC that can

robustly cancel rotor imbalances by redistributing mass in the presence of system

uncertainty. With the proposed methodology, both time domain and frequency domain

stability and performance requirements can be easily included in the design process.
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The remainder of this thesis is divided into five chapters.

Chapter 2 provides relevant problem background. A description of the centrifuge

rotor system and the ABC system is presented.

Chapter 3 presents technical background for the solution of the problem. System

robustness for multivariable systems is discussed, and the solution method is introduced.

Chapter 4 explains the method used to solve the control problem. This section

describes the implementation of the robust constrained optimization approach to control

design and how it was applied to design an ABC system.

Chapter 5 presents the results of the control design. The system is analyzed in

both the time domain and the frequency domain. Also, the results of Monte Carlo

simulations are presented.

Chapter 6 summarizes the topics in this thesis and presents suggestions for

possible future work related to this problem.
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2 Problem Background

In order to delineate the methodology used to solve the ABC design problem, it is

important to properly describe the centrifuge rotor system. In this section the centrifuge

rotor system and the ABC system are described in detail. Following the system

description is a general statement of the problem to be solved in the design of an ABC.

2.1 Centrifuge Rotor System

The purpose of the centrifuge is to simulate varying levels of gravity so that the

effects on the rodents can be studied. The centrifuge achieves the effect of varying levels

of gravity by spinning at different steady-state rates. In order to reach a desired level of

simulated gravity the rotor must go through a "spin-up" when the spin rate is slowly

increased to the desired level.

The spinning centrifuge imparts a centrifugal force on the rodents that serves to

simulate gravity. The centrifugal force increases with increasing spin rate. An

illustration of how the centrifugal force acts on the rodents is shown in Figure 2-1.
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r °--rce
Force :)Force

Top view Force
of rotor4

Figure 2-1. Illustration of Centrifugal Force Acting on Rodents

The centrifugal force acting on an individual rodent is specified by the equation

Force =Mrodentr1)2. ( 1 )

where the symbol Force refers to the centrifugal force on the rodent (N), Mrodent is the

mass of rodent (kg), r is the distance from spin axis to rodent (m), and w represents the

spin rate of centrifuge rotor (rad/sec).
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The purpose of the ABC system is to balance the rotor when the rodents have

imposed an imbalance. An illustration of the rotor and balancer masses is given in Figure

2-2.

StaticDynamic
Static Balancer
Balancer ISS

Figure 2-2. Rotor and Balancer Masses

If all of the rodents move to the same corner of their habitat, the center of mass of

the rotor shifts in that direction. The ABC utilizes sliding balancer masses as pictured in

Figure 2-2 within the rotor to cancel such imbalances. The static balancer masses are

utilized to correct imbalances that cause the rotor to translate in the (ý,1j) plane. The

dynamic balancer masses are utilized to correct imbalances that cause the rotor to tilt

about the (ý,T) axes. An illustration of the static balancer masses canceling an imbalance

is given in Figure 2-3. The dynamic balancers work in a similar manner to cancel

imbalances.
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Rotor CM imbalanceo~nspin ax otor CM
7 fl shifted

Balace toward
imbalance

Top view Top view
of rotor of rotor

1. Balanced Rotor 2. Imbalance due to
rodent position

Rotor CM
shifted back
to spin axis

<_
Rotor _ ," l
translation, "

V Top view
of rotor

3. Rotor translation is sensed in the 4. Balancer masses move
direction of the imbalance to correct imbalance

Figure 2-3. Illustration of Balancer Masses Canceling an Imbalance

The naming convention for the balancer masses and positions is described in

Figure 2-4. There are two types of balancer masses: static balancer masses (rectangles in

Figure 2-4) and dynamic balancer masses (circles in Figure 2-4). The set of static

balancer masses moving in the same direction along the ý-axis is denoted by the subscript

bl and the set of static balancer masses moving in the same direction along the n-axis is

denoted by the subscript b2. The symbols CbI and 7lb2 are used to describe the position of
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the set of balancer masses along the respective axes. The dynamic balancer masses also

work in pairs. Each mass is paired with the dynamic balancer mass diagonal to it. The

masses in a pair of dynamic balancer masses move in opposite directions parallel to the

ý-axis (which is pointing out of the page in Figure 2-4). For instance, if the dynamic

balancer mass in the upper right quadrant of Figure 2-4 moves up, the balancer mass in

the lower left quadrant moves the same distance in a downward direction. These mass

positions are denoted by Wb3 and -b4 corresponding to balancer mass names in Figure 2-4.

r4 b2 b2

~bl

Top View of Rotor b

I 
b3 -: 

b4

Figure 2-4. Balancer Mass Names and Positions

There exists a maximum imbalance that the rodents can impose on the system.

The maximum imbalance occurs when all of the rodents are positioned in the same corner
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of their habitats. This moves the center of mass of the rotor the furthest distance from the

spin axis of the rotor. Such an imbalance is illustrated in Figure 2-5.

Rotor C

SSpin Axis

STop view
Habitats--- of rotor

Figure 2-5. Maximum Rodent Imbalance Imposed on the Rotor

In this case all of the rodents are positioned in the upper-right corner of their

respective habitats. Equally large imbalances occur if all of the rodents move to any

other corner of their habitats at the same time. This maximum imbalance is used to

evaluate controller performance in Chapter 4 and Chapter 5.

Note that there are two separate coordinate frames used with respect to the

centrifuge rotor. They are shown in Figure 2-6. The (x,y) coordinate frame is fixed with

respect to the centrifuge base, and the (ý,T) coordinate frame rotates with the centrifuge
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rotor. Both coordinate frames are used since the rotor displacement sensors work in the

fixed coordinate frame and the input to the ABC is a measurement in the rotating

coordinate frame.

Top of
Rotor

T1 coordinate frame
rotates with the rotor

Figure 2-6. Rotor Coordinate Frames

A coordinate transformation as shown in Equation ( 2 ) is used to change

coordinate frames. Specifically,

[(J=[ cos~at) sin(a)]x] (2)Esin(at) cos(ox)Ly.(2

The ABC system is used to limit the translational response of the rotor due to

imbalances imposed by the position of the rodents within the habitats. The input to the

controller is an absolute measurement of the rotor displacement (translation and tilt) as

shown in Figure 2-7. The centrifuge rotor sensors measure relative displacement

between the rotor and the International Space Station. With this relative measurement,
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the absolute rotor displacement can be estimated using a Kalman filtering technique [17].

In this thesis it is assumed that these absolute rotor measurements are already available.

Rotor Transltion Rotor Till

Figure 2-7. Rotor Translation and Tilt

The equations of motion for the centrifuge rotor in the fixed frame coordinate

system (x,y coordinate system) are derived below. First, the equations of motion in the

translational direction are derived for the system in Figure 2-8. Then, the equations of

motion in the tilting direction are derived for the system in Figure 2-9.
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z

yY L

Figure 2-8. Model for Derivation of Equations of Motion in Translational Direction

The equations of motion in the translational direction [17] can be written in each

axis as

F. =MX (3)

and

FY =My. (4)

The symbol F denotes the external force on the rotor due to springs, dampers,

control inputs, and external disturbances. The equations of motion can thus be written

F, =-Cr(k-Lsin y)-K,(x-LsinOy)+u, +dx (5)

and

Fy = -Cy (P + Lsin bx,) - KY (y + Lsin Ox) + uy + dr. (6)
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where the symbols x and y denote the translation of the rotor in the fixed coordinate

frame, 4N and Oy are the tilt of the rotor in the fixed coordinate frame, u is the input force

due to balancer mass position, d is the disturbance force due to rodent position, M is the

mass of the rotor, C and K denote damping and stiffness coefficients between the rotor

and the outer wall of centrifuge, and L is the distance from the rotor center of mass to the

base of the rotor where the springs and dampers act.

Using the small angle approximation and making the substitutions

C11 =C = Cy, (7)

K3 = K- = Ky, (8)

CI I =- -Cý,L = -Cy L, (9 )

and

K11 =-KxL=-KyL, (10)

the equations of motion in the translational direction can be written in the form

Mi +C33 k +C1 2 0)y + KIx+ K12sy =ux +d (11)

and

My+C1-C20., +K Iy-K120., =Uy + dy. (12)

To derive the equations of motion in the tilting direction, the model in Figure 2-9

is considered. The symbols Kry and Cry denote rotational stiffness and rotational

damping, respectively, about the y-axis. The translational springs/dampers in the y-axis

and the rotational springs/dampers about the x-axis are not shown in the figure.
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U!

• • Kry

z

Ly YL C

Ox CX

Figure 2-9. Model for Derivation of Equations of Motion in Tilting Direction

With the small angle approximation, the equations of motion in the tilting

direction can be written in the form [ 19]

d I)Oxl Id .Ox+=T (13)

where (o is the spin rate of the rotor, Id is the transverse moment of inertia of the rotor, I1

is the polar moment of inertia of the rotor, and T is the external torque applied to the

rotor.
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Specifically, the symbol T denotes the external torque on the rotor due to springs,

dampers, control inputs, and external disturbances. The torque can be written as

T=, =--CYLS - Crx - CL 2 sin -KyLy-Krx¢,-KKyein ., +u., +do (14)

and

T•=CxL = -Cr. -C jL sin y +KrLx-KyO, -K.LesinOy +u¢, +d¢,, (15)

where uO is the input torque in the indicated direction due to balancer mass position and

do is the disturbance torque in the indicated direction due to rodent position.

Using the small angle approximation the torque can be written as

T0 =-CYL- - CyL2• - KyLy- - -Ky0-KL2 + u, + do (16)

and

To =CU- C,,,L Cj!y + KLx - K,,O,, - KjL:oy + uOY + doy ( 17 )

Make the substitutions

C22 = C" + Cy L 2 = Cy + Cx L2 , (18)

K 22 =Krx + KyL 2 = Kry + KxL 2 , (19)

C12 =-CXL = -CyL, (20)

and

K 12 =-KxL=-KyL. (21)
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Then, the equations of motion in the tilting direction can be written in the form

Idlý -- C2 + C 220x + oaIl Y, - K12Y + K,20, = u Ox +do( (22)

and

Idvy +C12i+ C220y- Wl:Ox + K,2x+K220y = U +do,. (23)

Now, the full equations of motion can be written

M'i + CI .i + C120y+ Kx + Ki20y = u, + d., (24)

My+C,115-C 12 0" + K1,y- K 1 2x =u, +dy, (25)

IdOx-CIJ2 +C 22x +o)lzOy -K, 2Y+K22 O =ur +dk, (26)

and

l a 1y + C,2. + C220y -0dzox + K12x+ K220y = U Y + dy. (27)

The equations of motion in the rotating coordinate frame (see Figure 2-6) can be

derived from the equations of motion in the fixed frame given in Equations ( 24 ), ( 25 ),

( 26 ), and ( 27 ). The importance of deriving the equations of motion in the rotating

coordinate frame is emphasized in Section 2.2.

Begin with the equations of motion in the fixed frame (Equations ( 24 ), ( 25 ),

(26 ), and ( 27 )) and apply the coordinate transformations

[x] =R['] (28)

and

1] LO/ (29)



18

where

"R = [cos(a*) - sin(a/)] (30)
[sin(at) cos(o/) J

Also, introduce R in the transformations

[Y] (31)

and

=OYJ, (32)

where

k =Ri[= sin(a) cos(ax)] (33)S=R -cos(ca) sin(tat)J 3

and

~[o 1](34)

Differentiation in time of Equation ( 28 ) and Equation ( 29) yields

= Aý['] + R[(] (35)

and

[ O ] =rl+r[ (36)

LY L1, 01j.
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Differentiation in time of Equation ( 35 ) and Equation ( 36) yields

(37

and

L~ RL + +2R[.c ] + R[j (38)

Differentiation in time of R from Equation ( 30 ) yields

'=-- 0sin(0)t) -w0cos(ox)]_.l(9
wcos(ax) - sna)

A = 0)cosi(a•) -0)si(a•)J =-__RI-" (39)

Differentiating in time of Equation ( 39 ) yields

F W2 cos(ar) W2 sin(a0) 1k _) i~x o2co(o)j - -w2R" ( 40 )

Also, R is defined in the same manner as R where

= = -( __I)I =[ wcos(ax) - wsin(ax)1 (41)
RLsin(ax) wcos(a") j.
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Then, Equations ( 24 )-( 27 ) can be recast in the form

017 017 (42)

+ KlIRL, + K12 R[OCJ =R uC +d]

and

R-1 1cs l ) 1)

"1 + --[0' 2- (43)

"+Kc22[R[.']+=Ru; + Li)o,
RF,1 -RFq 1 d

With a similarity transformation [20]

R- rcos(e(%) sin(ai) 144)
L-sinaox cos(a*)j

and the identities

R -k = R '(- oRI)= -oR 'Ri = -w!= (46)

R-'R =R-i(-(2R)=(o2R-IR=[ 0 (47)
R0 

_ 2 

(
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and

R'R =R(wR)=wR1R= 1 (49)

Equations ( 42 ) and ( 43 ) can be written in the form

M + [2 ++ -2 ( ] oJ2 + •+[' o2 [7

- (50)

12([F +[ [']ý1 +Kl['+K12 0 U+1' 0JiL 0 + KW-0 7L oj10 jIr• u-]

and

C2Mt 0 0  C- 2 - +

- 2[ o 1 +C 2w 12][o F]1
0 [ 17 +K 0+w:[l JOlr;+[o1 o] +o.] 12[l -01]['] +K22 [O•]-EUqK + do].d

Collecting terms, the final coupled equations in the rotating frame become

MLmw C,, JI # L CIc _-Mw2 + K,. 11(2

+[0 C2]C] + [=1( 1 [, [,+d
-- C12 0 IL, - K12 C 2 (o 0r7 u,, + dI
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and

Ld J + -C22 - 21 d ( J)I+,W ,
dLbJ21dW - C&Y ZiC22

C[2 2oK a(I- Id )+ K2 22L ?2J (53)

C1 +=_C2o -K2UK+oc,: ~~11 [U JLJL .c7~~j u + don.

If the coupling terms are neglected, the equations become

M[ L+[11 2m ][• j +J[- MW2+K1J -u j ,][ (54)

and

I[d + C22  -2 2d OW+ Wz

[2 1 d ) 0 . C 22  J( 55 )
[() IZ'd)+ K22  2 (1 +K2 2(0 ]O]L=juK (do,)C22(09 W (1 - Id) +K22 07 _u., + dv j

where ý and -q represent translation of the rotor in the rotating coordinate frame,

4ý and 0, represent tilt of the rotor in the rotating coordinate frame, u is the input

force/torque due to balancer mass positions (ýbl,3,O,4), and d is the disturbance

force/torque due to rodent position.

Note that the dynamic behavior depends on the spin rate of the rotor, 0. Since W

can vary in time, the equations of motion represent a linear time-varying system. This

requires that any ABC must stabilize the system for the range 0 < (0 < (Omax.
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It can be verified that the system with uncoupled dynamics (Equations (54 ) and

( 55 )) closely approximates the system with coupled dynamics (Equations ( 52 ) and

( 53 )) by comparing the frequency response of each system. A comparison of the

frequency response of each system in one of the translational directions (ý) and one of the

tilting directions (0k) is presented in Figure 2-10 and Figure 2-11.

Bode Comparison - Coupled vs. Uncoupled

0 ýbf>

coupled

-10 - uncoupled

-20

_.30

-60

10 0 Frequency (rad/sec) 101

Figure 2-10. Bode Comparison - Coupled vs. Uncoupled Translational Direction
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Bode Comparison - Coupled vs. Uncoupled

-15

-20 coupled
-20 •uncoupled

-25

-30

._ -35

-40

-45

-50

-55
100 Frequency (rad/sec) 101

Figure 2-11. Bode Comparison - Coupled vs. Uncoupled Tilt Direction

It is clear that the frequency response of the uncoupled system closely matches

the frequency response of the coupled system. This verifies that the uncoupled system

can be used to approximate the coupled system. This approximation is utilized in the

controller design presented in Chapter 4.

2.2 Auto Balancing Controller

As previously mentioned, the objective of the ABC system is to limit the

translation of the rotor due to imbalances imposed by the position of the rodents within

the habitats. This includes limiting both the peak translation of the rotor and the steady-

state translation of the rotor due to a fixed imbalance. Additionally, the control system

should be robust to uncertainty in the rotor spin rate, wo, over the range 0 < (0 < tomax, and

be robust to other forms of uncertainty in the plant. Finally, the controller should avoid
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commanding the balancer masses to change position quickly, causing saturation in the

balancer mass speed. By avoiding actuator saturation, the linearity of the control system

is preserved.

Based on the rotor displacement, the ABC commands the position of the balancer

masses in order to cancel a rodent imbalance and limit the translation of the rotor. A

simplified block diagram of the linear system is shown in Figure 2-12.

Rodent Disturbance Rotor Translation

Balancer Rotor Displacement
Mass Position

Figure 2-12. Control System Block Diagram

As discussed in Section 2.1, the ABC system operates in the rotational coordinate

system. Since the absolute displacement is estimated in the fixed coordinate system [17],

a coordinate transformation as shown in Equation ( 2 ) is required convert the sensor

displacement to the rotating coordinate frame before it is used by the ABC. For the

design of the ABC system, the plant dynamics can be formulated in the rotating

coordinate frame yielding Equation ( 52 ) and Equation ( 53 ). While the ABC can be

designed using the dynamics in the rotating coordinate frame, the implementation of the
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controller is performed on the fixed frame dynamic model with the coordinate

transformation.

It is necessary to design the controller using the rotating coordinate frame to

effectively cancel imbalances and limit the steady-state translation of the rotor. To

illustrate this, it is necessary to see a plot of the rotor translation in each coordinate frame.

Plots of the rotor translation in each coordinate system are shown in Figure 2-13 for a

stationary rodent imbalance (as described in Figure 2-14) in the open-loop (uncontrolled)

system. The rotor is rotating at a constant spin rate.

x 10- Rotor Translation in x (fixed frame) U -4o Rotor Translation in zeta(rotating frame)

4 - 5-

0 0
S-2 '

-4 1

-6"0 20 40 60 00 0oo 0 20 40 g0 0o 100
Time(s) Time(s)

Figure 2-13. Comparison of Rotor Translation in Fixed and Rotating Coordinate
Frames

It is worth noting that in the fixed frame coordinate system (x-direction), the

response is oscillatory, while in the rotating frame coordinate system (c-direction) the

response is nearly constant after the transient effects subside. This is a result of the fact

that the rotating coordinate system is rotating with the rotor imbalance. The rotor

translates in the direction of the imbalance which remains the same in the rotating frame,
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but changes in the fixed frame. This effect is illustrated in Figure 2-14 where the

imbalance is initially (at time = t1) in both the x-direction and the c-direction, but as the

rotor rotates through angle w(t2-tl) the imbalance is no longer in the x-direction but it

remains in the c-direction.

Top view of Top view of imbalance

Time = tl Time = t2

Figure 2-14. Comparison of Imbalance in Fixed and Rotating Coordinate Frames

The importance of this result is that for steady-state error to be limited by the

control system, the integral of the rotor displacement must increase as long as the error

remains present. Since the response in the fixed frame coordinate system oscillates about

0, the integral is not increasing and the steady-state error cannot be eliminated. The

integral of each signal is shown in Figure 2-15. Clearly, the rotating coordinate system

must be used to limit steady-state error since the integral of the displacement is not

increasing in the fixed frame coordinate system.
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g x - Integral of Rotor Translation in x (fixed frame) Integral of Rotor Translation in zeta (rotating frame)

0.5 0.035/

S-o 1 • 0.02•
U,04

,-25 - 0.015

-21 5 0.006

0 213 403 60 80 IO00 40 080 1030

Time (s)Time(s)

Figure 2-15. Comparison of the Integral of Rotor Translation in Fixed and Rotating
Coordinate Frames

Figure 2-16 is a block diagram of the controller. The symbols Kp, Kd, and Ki

represent constant gain matrices of size 4x4.

Displacement Cm
MesuemntDerivative Kd 4x4

Modified Integrator Ki 4x4

Figure 2-16. Block Diagram of Controller

A modified integrator is used, as opposed to a true integrator (l/s), in order to

avoid adding poles on the joJ-axis of the complex plane. By adding the poles slightly in
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the left-half-plane, the robust stability of the control system is improved. An example of

this improvement is presented below.

To illustrate the improvement in robust stability, a single-input, single-output

(SISO) system is considered with pure integral control (K/s) and modified integral

control (K/(s+p)). Block diagrams of the system in each configuration are shown in

Figure 2-17 and Figure 2-18.

S- P.

Figure 2-17. System with Pure Integral Control

F1Sy

Figure 2-18. System with Modified Integral Control
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The symbol P denotes the plant and is specified by the equation

1P = 1(56)
c k (6

S2 +-s+--
m m

The system parameters are assumed to be K=I, p=l, m=1, c=2, and k=1. A plot

of the poles of the transfer function from r to y for each system is given in Figure 2-19.

Poles for Pure Integrator and Modifed Integrator

X with pure integrator X
X with modified integrator X

0.6

0.4

U)

>< 0.2

So . . . . . .. . ---- .. . .. .. .. .. . ... ... . .. . . . .. . .. .. . .. . .. ..

W -[2
E

.t O4

-0 x X-o8 X

-5 -2 -t15 -1 -(]5 (i 0]5
Real Axis

Figure 2-19. Poles for Systems with a Pure Integrator and a Modified Integrator

It is observed from Figure 2-19 that the system with the modified integrator has

closed-loop poles farther from the j0-axis than the system with the pure integrator. In

general, this corresponds to a system with better robust stability since it will take a larger

perturbation for the closed-loop poles to move to the unstable region on the right side of

the jw-axis. This is demonstrated by allowing the damping coefficient to decrease until

instability is reached. For the system with the pure integrator the pole plot of the closed-
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loop system is presented in Figure 2-20. The plot shows the poles for decreasing values

of the damping coefficient, c.

Poles for Pure Integrator with Perturbation in c1,5 , 1

X c=2.0Xc=11.5 x X

X c=11.0

X c=0.5
-0.5 X c=0.0

U, O5 X X X1 S0 ------ X -........ -X . . .------x --X -x -........... ..... ...... .....

E -0 ,

-2 -15 -1 -05 n 0.5
Real Axis

Figure 2-20. Poles for Pure Integrator with Perturbation in c

From Figure 2-20 it is seen that the system poles cross into the unstable region for

c = 1.0. Therefore, the pure integral control is able to tolerate a 50% variation in the

damping coefficient.

For the system with the modified integrator the pole plot is presented in Figure

2-21 for decreasing values of the damping coefficient, c.
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Poles for Modified Integrator with Perturbation in c1.5 1 1 -

X c=2.0
X c=1.5 X X
X c=1.o X
X c=o.5 X
X c=O.O

E-05

xx

-1.5 I

-2.5 -2 -1.5 -1 -0.5 0 0.5
Real Axis

Figure 2-21. Poles for Modified Integrator with Perturbation in c

From Figure 2-21 it is observed that the system poles cross into the unstable

region for c = 0.4. Therefore, the modified integral control is able to tolerate an 80%

variation in the damping coefficient. This is significantly larger than the system with

pure integral control, indicating that the system with modified integral control is more

robust to variations in the damping coefficient (as well as other plant parameters). This

increase in robust stability comes at the cost of increased steady-state error as discussed

in Section 3.5.

Block diagrams of the centrifuge rotor control system are shown in Figure 2-22

and Figure 2-23. Figure 2-22 is the system used to design the controller. The dynamic

equations of motion are in the rotating coordinate frame and time delays are neglected.
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Since the time delays are small, they are neglected in the linear stability analysis, but they

are accounted for in the time domain simulation portion of the design in Chapter 4.

spin rtranslation

disturbance

SPlant (Rotating Frame Dynamics)

Controller

Figure 2-22. Block Diagram of System used for Design

Figure 2-23 shows the system used to implement and test the controller. The

system is simulated using a solver based on the Runge-Kutta (4,5) numerical integration

scheme [21]. The dynamic equations of motion are in the fixed coordinate frame and

time delays are present. A coordinate transform is used to transit from the fixed

coordinate frame to the rotating coordinate frame. The symbols (ýbI,flb2,ý3,•4) denote

the commanded positions of the balancer masses.
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spin ratetrnlio
S~~~cos ox sin ox" rnlto

disturbance K - sin ox cos ox_

Z-1 Coord Transform'
Integrator Plant

Mass Rate Derivative Output Input
Saturation Delay Controller Delay

Figure 2-23. Block Diagram of System used for Implementation

2.3 General Problem Statement

It is assumed that the following constraints apply to the ABC:

I. limit the peak translation ( " 2 + r 2 ) of the rotor < y, for all rodent

disturbances,

II. ensure stability over the range 0 < (o < Wmax,

III. be robust in the presence of spin rate(w), rotor mass (M), and rotor

inertia(Id,Iz) uncertainty,

IV. limit commanded balancer mass speed < y2, and

V. limit steady-state rotor translation < 3 for a fixed disturbance (rodents are

stationary),

where the symbols YI,Y2, and Y3 represent specific problem constraints to be defined in

Section 4.1. Note that the tilt of the rotor is not directly constrained since it contributes to

the translation of the rotor (which is constrained).
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3 Technical Background

Before introducing the design process of Chapter 4, some background in the

technical tools used to analyze the control system is necessary. In this section,

background in robust control for multi-input, multi-output (MIMO) systems is presented.

Also, steady-state error in control systems is examined. Finally, a robust constrained

optimization approach to control design is presented.

3.1 Multi-Input, Multi-Output (MIMO) Control

It is well known from classical control, single-input, single-output (SISO)

systems, that the gain of a system can be defined in terms of the frequency response or

Bode plot [22]. Defining the gain of a system for the MIMO case is less clear since a

Bode plot only represents the frequency response from a single input to a single output.

To describe system gain for the MIMO case, singular values are introduced [23].

Consider the transfer function matrix G with m inputs and n outputs. If G is evaluated at

a fixed frequency, o), G(j9) is a constant n x m complex matrix. Any matrix G can be

decomposed into its singular value decomposition (SVD) [23]

H

G = UIV (57)

where the symbol I is an n x m matrix with non-negative singular values, ai, in

descending order along the main diagonal, U is an n x n unitary matrix of output singular

vectors, and V is an m x m unitary matrix of input singular vectors.

The column vectors of U, ui, represent the output directions of the plant, while the

column vectors of V, vi, represent the input directions of the plant. That is, if an input in
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the direction of vi is considered, the output will be in the direction ui and the signals are

related by the corresponding singular value. Specifically,

Gvi =! o'iu . (58)

It can be shown that the largest gain in any input direction is equal to the largest

singular value [24]. The largest singular value of a matrix is denoted by the symbol

5(G) = or1 (G). (59)

To obtain the MIMO frequency response for G(s), G is evaluated at s=jto for the

interval wo for which the frequency response is desired. The maximum singular values are

then plotted as functions of (o to provide the maximum system gain at any frequency, 0o.

The peak of this frequency response plot is known as the H-infinity norm of the

system[24], defined by the equation

IIG(s)ll_ = max 5(G(jo)). (60)
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To illustrate, the system [25] in Figure 3-1 is examined.

K

Figure 3-1. Control System Example

In this example, H and K are specified by the equations

9 -101
H(s)= s+1 s+I (61)

[8 9

s+2 s+2j

and

K =[21 (62)

The transfer function from r to y can be written in the form

y = Tr, (63)

where

T = (I+HK)-'H. (64)
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This matrix is evaluated at s=ja=-0 to find the singular values of the system at

co=0 rad/sec. This yields

=0 0.6452 -0.6774]
T(jwo=0) =1-0.2903 0.3548 j (65)

Using SVD, this matrix can be written in the form

0.6452 - 0.6774] [-0.8983 0.4395][1.0413 ][-0.6790 0.73411

-0.2903 0.3548 j 0.4395 0.89831[ 0.0310.][ 0.7341 0.6790 (66)

It is seen that the singular values at o9=0 are a1 =1.0413 and a 2=0.0310. Using

SVD for each frequency in a set of desired frequencies and plotting the maximum

singular value produces the frequency response plot in Figure 3-2.

Singular Values of T
1.4

1.2

1LO
..

ZD 0.8

S0.6
U')

0.4-

0.2

0 0100
10 10 10 102 103

Frequency (rad/sec)

Figure 3-2. Maximum Singular Values
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It is verified that the maximum singular value at o=-O is a1=1.0413. Singular

values have two distinct advantages over eigenvalues for MIMO systems; they provide

information about the gains of the plant and they can be obtained for non-square plants.

3.2 Uncertain Systems

One of the problem constraints presented in Section 2.3 was that the system with

the ABC must be robust to uncertainty in plant parameters. Uncertainty in a control

system is the discrepancy between the actual system and the model of the system.

Uncertainty can arise from many sources. Some sources of uncertainty are [25]:

I. approximate or erroneously valued parameters in the plant,

II. ignored complexities (nonlinearities, time delays, etc.),

III. imperfections in sensors/actuators,

IV. unmodeled dynamics, and

V. model order reduction of the plant.

In general, uncertainty appears in two basic forms: parametric uncertainty and

unmodeled dynamics [28]. Parametric uncertainty will be the form of uncertainty

primarily examined in the design process for this thesis.

Uncertainty can be easily modeled in a feedback manner known as a linear

fractional transformation (LFT) [24][28][29]. Using LFTs it is possible to separate what

is known (model of the system (M)) from what is unknown (the bounded uncertainty (A))

in a feedback interconnection [28] as shown in Figure 3-3.
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SM

Figure 3-3. Linear Fractional Transformation

In the case of unmodeled dynamics, A is any fully populated transfer function

matrix where

IAl •1 (67)

This is known as unstructured uncertainty.

In the case of parametric uncertainty, A generally has a diagonal structure of the

form

A 62 (68)

Equation ( 67 ) still applies to the case of parametric uncertainty, but the structure of the

uncertainty is constrained to the form in Equation ( 68 ). This is known as structured

uncertainty. Generally, weighting functions are added to the plant so that Equation ( 67)

is satisfied.
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To illustrate how system uncertainty can be formulated in an LFT framework, the

system in Figure 3-4 is considered. This is the same system considered in Section 3.1

with an uncertainty added in the input to the plant (or the actuator signal).

SI+A H

K

Figure 3-4. Uncertain System Example

The symbols H and K are as defined in Section 3.1 and A has a diagonal structure.

Specifically,

A=[' 82] (69)

and 81 and 82 are allowed to vary on the interval [-0.8,0.8], allowing for 80% uncertainty

in each actuator signal. The uncertainties can be "pulled out" and the system and can be

re-arranged as in Figure 3-5.
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I~H'

YY

K -

Figure 3-5. Pulling out the Uncertainty

The symbol M represents the transfer function from UA to yA. Using block

diagram algebra, an expression for M is derived. Specifically,

YA = -Ky , (70)

YA =-KH(uA + yA) , (71)

YA = -KHuA -KHYA , (72)

(I + KH)yA = -KHuA, (73)

YA = -(I + KH)-'KHuA, (74)

and

M = -(I + KH)-'KH. (75)
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Now, the system can be written as an LFT as in Figure 3-3. However, A must still be

normalized so that the norm bound on A is 1. Weighting functions, W, and W2, as shown

in Figure 3-6, are used to accomplish this scaling.

W2 .A.. W1

-M

Figure 3-6. Normalizing the Uncertainty

In this case, the weighting functions

W, = [0.8 0 (76)

and

W2 =[I 0] (77)

normalize the uncertainty while allowing the actuator gain 80% uncertainty. The

weighting functions are appended to M to recast the system in the form of Figure 3-3

with A normalized to 1.
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3.3 Small Gain Theorem

The small gain theorem ties together the concepts of singular values and system

uncertainty to form the basis of the robust stability problem for MIMO systems. Robust

stability is achieved when all plants in a given uncertainty set are stable for all possible

perturbations [24]. Consider the system shown in Figure 3-7 where M(s) and A(s) are

strictly stable transfer function matrices.

A+

M +

Figure 3-7. Small Gain Theorem

The small gain theorem [29] states that for y >0 the interconnected system in

Figure 3-7 is well-posed and internally stable for all A(s) with

BAIL - 1/r if and only if IIMIL < y. (78)

This condition can be re-written as

U(M(jw))5(A(jw))< 1 Vw. (79)
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Commonly, the problem is posed such that A is norm-bounded by 1. In this case,

the robust stability (RS) condition based on the small gain theorem can be written as

RS ý5(M(jw))<l Vow. (80)

Alternatively, the condition can be written as

RS <-* IIML < 1. (81 )

3.4 The Structured Singular Value

The small gain theorem provides the foundation for answering the problem of

robust stability. However, the small gain theorem is conservative for the case of

structured uncertainty, or parametric uncertainty, since it assumes an unstructured

perturbation. The structured singular value is an expansion of the small gain theorem

used to provide a less conservative answer to the question of robust stability (or robust

performance) subject to structured uncertainty. The structured singular value was first

introduced by Doyle in 1982 [26][27].

3.4.1 Robust Stability with the Structured Singular Value

The small gain theorem gives a condition for robust stability in Equation ( 80 ).

While this condition provides a method for evaluating robust stability, it is known to be

conservative for the case of structured uncertainty [25]. The structured singular value (g)

is introduced to provide a less conservative answer for the case of structured uncertainty.
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The structured singular value, [t, is defined as

1
PA (M) = min{U(A) st. det(I - MA) = 01 (82)

where the denominator is the maximum singular value of the smallest A that is able to

destabilize the system. While it is quite difficult to compute gt directly, advanced

algorithms exist [28] to compute upper and lower bounds on gt. This thesis will be

primarily concerned with the upper bound since it provides a slightly conservative

answer, while the lower bound often provides an answer that is not conservative enough.

From the small gain theorem, an initial upper bound on g. can be formulated.

Specifically,

PA (M) < 5(M(j0)). (83)

As previously stated, the bound in Equation ( 83 ) is known to be conservative for

the case of structured uncertainty. To reduce conservatism, scaling matrices, D and D-,

are introduced as shown in Figure 3-8. Figure 3-7 is replaced with Figure 3-8 for

evaluating robust stability with g.
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D----- --- A- ---- A(

D"---1 D -4

M9
The-block-diagram can.now.bedrawn.as.n.Figure.--9--...........

Figure 3-8. Robust Stability with Scaling Matrices

Since A has a diagonal structure for the case of structured uncertainty and D is a block

diagonal scaling matrix,

DAD- = A ( 84 )

The block diagram can now be drawn as in Figure 3-9.

L D -,

M)

Figure 3-9. Simplified Robust Stability with Scaling
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The small gain theorem now provides the upper bound on p.

Pu(M) _ý (DMD-'), (85)

where D is a free parameter that can be used to get a less conservative upper bound on pt.

It follows that an optimal D can be found to find the least conservative upper bound on p.,

which provides a new, less conservative condition for robust stability. That is,

RS 4-- minIODMD-'I <1 (86)

To illustrate the advantage of using the structured singular value to determine

robust stability, the example from Section 3.2 is again considered. The system with

weighting functions as specified in Section 3.2 is presented in Figure 3-10. The system,

M, is taken to be the closed-loop transfer function, T, as defined in Section 3.1.

W2 AW,

L -

MM

Figure 3-10. System with Weighting Functions
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For evaluating robust stability, there are two conditions. Both provide an upper

bound on pa. Specifically,

RS €:€ 5(M-(jw)) < 1 Vw Small Gain Theorem (87)

and

RS <#, minGD Y'11 < 1 Structured Singular Value (88)

The upper bounds on g. for each case are plotted in Figure 3-11. In this case the

small gain theorem does not guarantee robust stability for the system since the peak value

is greater than 1. However, the structured singular value does guarantee robust stability

since the peak is below 1. Clearly, the small gain theorem is conservative in this case.

The structured singular value allows for a less conservative answer to the question of

robust stability through the use of the scaling matrices, D and D-.

Small Gain Theorem vs. p.
1.4

Small Gain Theorem

1- 2 Structured Singular Value

1

0
-o 0.8

CL
OL

0A

D- 054

0.2

a I0 1 2 310-1 10 10 10 10Frequency (rad/sec)

Figure 3-11. Small Gain Theorem vs. g.
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3.4.2 Robust Performance with the Structured Singular Value

Robust performance is achieved when a given performance objective is achieved

for all plants in a given uncertainty set. More specifically, for the system in Figure 3-12,

robust performance is defined as

RP - IIFII_ <a . (89)

F

Using LFT
---------------I I!

I I
! I
* I

Figure 3-12. Definition of Robust Performance

Generally, weighting functions are added to F so that the problem can be written

RP <. IIFII_ < 1. (90 )

The problem of robust performance can be treated in the framework of the

structured singular value by using the small gain theorem to convert the problem to a

robust stability problem. Since the requirement for robust performance in Equation ( 90 )

is the same as the small gain requirement for robust stability in Equation ( 81 ) where M

is replaced by F, the robust performance problem can be posed as a robust stability
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problem. Figure 3-13 is a pictorial representation of a robust performance problem being

converted to a robust stability problem through the use of a fictitious uncertainty block Ap

[24].

r -- -- -- -- -RP , ,,IFI11 < 1 RS IIF1 <IL

I F1

Algebra Same Requirement as
L"- -- - - - - ----- Small Gain Theorem

M is nominal closed
loop system [A

RS =p(M ) < 1V co Aý=

M M

Figure 3-13. Converting a RP Problem to a RS Problem

Now, if the robust stability requirement

RS V=w ,uz (M) < I Vo (91)

is satisfied, robust performance is guaranteed. To illustrate how robust performance is

evaluated with the structured singular value, the example from Section 3.2 is again

examined. The system in Figure 3-14 is considered.
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_ +H Y,

+ n

K+

Figure 3-14. System for Robust Performance Problem

The symbol n represents the system input, sensor noise, and the symbol y

represents the variable to be regulated. It is assumed that for the system with 80%

actuator uncertainty, the performance objective is to limit the output, y, to 10% of the

sensor noise, n, at high frequencies (where sensor noise is most likely). This

performance objective requires that the system is robust to the sensor noise. To

normalize the performance objective to 1, weighting functions are added to the system as

shown in Figure 3-15.
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H

K W- n

Figure 3-15. System with Weighting Functions

The symbols W, and W2 are as described in Section 3.2. The matrix

Wy= [10 101 (92)

serves to impose the 10% limit on the output of the system. Further, Wn serves to impose

the robust performance requirement at high frequencies only. In this case the output is

required to be less than 10% of the sensor noise at frequencies above 100 rad/sec

(roughly where the plot of Wn' (shown in Figure 3-16) nears 1). Specifically,

W" [ W"'] (93)

and

W s+1.73 (94)s+173 .
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Weighting Function Wn'

0.8
U.)

S0.6

Cý

S0.4

0.2

10-1 100 101 102 103 104
Frequency (rad/sec)

Figure 3-16. Weighting Function W.'

This performance objective is evaluated using g. The upper bound of g is plotted

for the 10% requirement in Figure 3-17.
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Figure 3-17. Robust Performance Plot for 10 % Requirement

Since the peak of the robust performance plot is greater than 1, the conditions for

robust performance are not satisfied. However, if the performance requirement is relaxed

to limit the output to 20% of the input signal over the same frequency range, robust

performance is achieved. The results are shown in Figure 3-18.
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Robust Performance

SLimit Error to 10%

1.2 - Limit Error to 20%

1
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Figure 3-18. Comparison of 10% and 20% Requirements for Robust Performance

3.4.3 Real Parametric Uncertainty to Complex Uncertainty

For a complex uncertainty (unmodeled dynamics or complex parameter

uncertainty) gi is a continuous function. However, li is not necessarily a continuous

function when all perturbation blocks are real, as is often the case for parametric

uncertainty [30]. This discontinuity can cause problems in the convergence of the bounds

on R. [28].

In fact, in order to derive a more reliable bound for the design of the ABC, the

parametric uncertainty in the spin rate was treated as an uncertain complex parameter.

The interval for spin rate was then divided into several smaller complex intervals and

each interval was tested for robust stability and performance [31]. An illustration of how

the uncertainty in the spin rate was treated is shown in Figure 3-19.
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P Re( l)) I to. . . . . . . . . . .- -- Re(e)

Figure 3-19. Real to Complex Uncertainty

The complex uncertainty representation is somewhat conservative since it allows

for a small complex contribution in the spin rate, which is not possible. However, the

complex representation contains the entire interval in the real uncertainty representation

and it allows for a more reliable computation of the bound on the structured singular

value.

3.4.4 Centrifuge Rotor System in g-analysis Framework

Figure 3-20 presents a pictorial representation of an uncertain centrifuge rotor

system formulated into a robust stability problem using the structured singular value.

The diagram describes the steps necessary to put the uncertain centrifuge rotor system in

the p-analysis framework.
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Uncertain Parameters Uncertainty

Spin rate (w)

Replace Rotor Mass (M) With AM Am
W__[ i Replace Wt

S ;ithese in >these
j plant M

dynamics ,
Now, the plant dynamics
can be put into the
following form

AA
d(G(j0))5(A(j0)))<I V0) Small Gain Algebraic k4

Structured Theorem Manipulation A

Singular1
Value (i) ,[A",

,u(G(J°w))5(A(jr°))<I VW A= AM

If A is normalized to 1,
the requirement for P = Plant
robust stability is: 9(G(jo)) <1 K = Controller

Figure 3-20. Evaluating System Robustness with the Structured Singular Value

3.5 Steady-State Error in Control Systems

One of the problem constraints as presented in Section 2.3 is to limit the steady-

state error in the centrifuge rotor system. It is common practice in control design to

introduce an integral term into the controller to eliminate steady-state error. This integral

term increases the system type. The system type is defined as the number of poles the

open-loop system (the transfer function from e to y in Figure 3-21) has at s = 0 [22].

Adding an integral term in the controller introduces a single pole at s = 0. The steady-

state error of a system can be expressed with respect to the system type and the input to

the system. For example, the steady-state error due to a step input for a type 0 system

and type I systems and higher is shown in Table 3-1.
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System Type Steady-State Error

Type 0 System ess = constant

Type 1 (or higher) System ess = 0

Table 3-1. Steady-State Error due to Step Input

A controller utilizing only an integral term has the structure shown in Figure 3-21.

P is a type 0 system. Since an integral term has been added via the controller to a type 0

system, the system is now a type 1 system. It should have steady-state error of 0 for a

step input.

Figure 3-21. System with Pure Integral Control

If K is chosen so that the system is stable, the integral controller in Figure 3-21

will eliminate steady-state error. However, adding an integral term to the controller adds

a pole of the open-loop system on the jw-axis. Although this pole can be moved off the

axis for the closed-loop system, K is often constrained to be small to satisfy other

problem constraints. In this case, the pole is not moved far off of the jw-axis and this

close proximity to the unstable region can lead to poor system robustness. For this
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reason, it is often advantageous to use a modified integrator, such as in Figure 3-22, to

move the pole away from the jo)-axis when p is a positive real number. The system is a

type 0 system and steady-state error is expected for a step input.

s+p

Figure 3-22. System with Modified Integral Control

The increase in system robustness for modified integral control comes at the cost

of allowing some steady-state error for a step input. This relationship is derived through

use of the final value theorem [22] which provides the relationship

limf(t) = limsF(s) (95 )
t -"-+ s--'+'

The final value theorem relates the final value, or steady-state value in the time

domain, to the Laplace transform of a system evaluated at s=0. As an example, consider

the system presented in Figure 3-22 where the plant is defined by the equation

1
P = (96)

2 c kS+--s+--
m mn•

Since the steady-state error is of interest, the transfer function from r to e will be

evaluated. The closed-loop transfer function from r to e can be written in the form
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e (97)
r +( K

l+Pi

Evaluating this transfer function with the final value theorem yields a measure of

steady-state error as the ratio of the magnitude of the steady-state error to the magnitude

of the reference input signal.

First, make the substitutions

a3 =1, (98)

C
a 2 = - + p, (99)m

c k
a, =-p+-, (100)

m m

and

k
ao =-p . (101)

m

The transfer function from r to e can be written in the form

F(s) = a 3s 3 +a 2s 2 +as+ao (102)
a3S3 + a2s 2 -as-ao+K .(102
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To evaluate the steady-state error for a unit step input from r, the term (1/s) must be

added to account for the step input. Thus,

e(s) = F(s)r(s) = a 3s3 + a 2s2 + as+a0  1 (103)
a3s+a 2s 2 + a~s + ao + K s.

Now the term on the right side of Equation (95 ) is evaluated. That is,

k--p

es, = sF(s)r(s) S=0 ao m (104)
-kp+K
m

where e,, is the steady-state error with a reference input of a unit step. It is seen that for

p=O, there is no steady-state error. Also, the steady-state error increases as p increases for

a given value of K. This is verified through time domain simulation for the case where

c=10, k=1, m=1, K=1, and p--0.1. Based on Equation ( 104 ), a steady-state error of

0.091 is expected for a unit step input in r. The step response is shown in Figure 3-23 for

the system with a pure integrator and the system with a modified integrator.
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Step Response Comparison
1 .8 ,1,_,

- modified integrator
1.6 - pure integrator

reference input
1.A

1.2-1 Aj

E
-0 0.8

S0.8

0-4

0.2
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Time(s)

Figure 3-23. Step Response Comparison for Pure and Modified Integrator

It is seen from Figure 3-23 that the system with the pure integrator does not have

steady-state error, while the system with the modified integrator has steady-state error of

0.091 as expected. However the system with the pure integrator sacrifices system

robustness when compared to this system with the pure integrator. It is demonstrated in

this section that the system with the modified integrator is significantly more robust to

error in the sensor measurement. Sensor error is introduced as shown in the block

diagram in Figure 3-24.
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r e P Y,

SensorI
Gain "

Figure 3-24. System with Sensor Error

Applying a sensor gain of 15, the systems are compared. The response of the

variable y is shown in Figure 3-25 for each system when r is a unit step input.

Comparison of Pure/Modified Integral Control
Sensor Gain = 15

0.5 .....
pure integrator

0.4- modified integrator

0.3-

0.2

0-0.1 -

-0.2

-0.3

-0.4 I
0 10 20 30 40 50 60 70 80

Time

Figure 3-25. Comparison of Pure/Modified Integral Control
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While neither system follows the step input very well, it is clear that the system

with pure integral control is unstable, while the system with modified integral control is

stable. In fact, the gain margin for the system with pure integral control is 10 (20 dB),

while the gain margin for the system with modified integral control is 20.1 (26 dB). It is

notable that the system with the modified integrator has a gain margin twice as large as

the system with pure integral control while sacrificing steady-state error of 9.1%.

In the case of the centrifuge rotor, the steady-state error analysis is modified to

treat the MIMO case. If the step input r = ramp * (I/s), then e = F * (1/s) * ramp. Using the

induced 2-norm (denoted as i2) to define performance, the steady-state error can be

expressed as

Ies, 11,2 < IIF(s = 0)11l,2IIro. 1 , (105)

where the symbol F denotes the closed-loop transfer function from r (or the disturbance

in the case of the centrifuge rotor) to e (the translation in the case of the centrifuge rotor).

This equation is valid for the case where r is a signal with finite area under the curve. In

the case where r is a step input, the relationship is written using the induced 1-norm

(denoted as il) [32] as

les, L_ < [IF(s = 0)1u,,u[r.,[IL. (106)

The steady-state error of the centrifuge rotor with a controller is analyzed in Section

4.3.1.2.
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3.6 A Constrained Optimization Approach to Control Design

To design the ABC a procedure is proposed to combine both time domain and

frequency domain constraints [33][34]. The ABC design problem is first converted into a

constrained optimization problem where the translation of the rotor due to a fixed worst-

case imbalance during "spin-up" is minimized subject to problem constraints. A

constrained optimization approach is then applied to solve the problem.

A flow chart of the process used in a robust constrained optimization approach to

control design is shown in Figure 3-26. This process is applied to the mathematical

formulation of the control problem presented in Section 4.2 to generate an ABC. The

optimization problem is solved using a gradient-descent method [38][39][40].

Initial Guess for K (controller)

Evaluate Objective Function (e.g. rotor translation)

Evaluate Problem Constraints
(e.g. stability properties)

Adjust K to satisfy Are constraints satisfied?

constraints <
No

Yes

objective function N oNo

Yes

[ Controller Design Complete

Figure 3-26. Flow of Robust Constrained Optimization Approach to Control Design
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This approach has also been used to design control systems for the International

Space Station Momentum Manager, an active vibration isolation system, and the Control

Momentum Gyroscope Flex Filter for the International Space Station [35][36][37]. A

major advantage of this approach is the capacity to deal with both time domain

constraints (such as rotor translation constraints) and frequency domain constraints (such

as robust stability specifications) simultaneously.
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4 Solution Method

To solve the ABC design problem, a robust constrained optimization approach to

control design is implemented. The problem to be solved is re-stated more specifically in

Section 4.1 and Section 4.2. A three stage design procedure is implemented and the

intermediate design results are presented in Section 4.3.

4.1 Problem Setup

It is assumed that the following specific constraints apply to the ABC:

I. limit the peak translation (V7 2 + rq1 ) of the rotor < 3.5mm for all rodent

disturbances,

II. stability is required over the range 0 < 0o < o),,

III. be robust to uncertainty in:

a. spin rate (w) of 100%,

b. rotor mass (M) of 60%, and

c. rotor inertia (Id,I,) of 45%,

IV. limit commanded balancer mass speed < lmm/sec, and

V. limit steady-state rotor translation < 0.1mm for a fixed disturbance

(rodents are stationary).

Note that the tilt of the rotor is not directly constrained since it contributes to the

translation of the rotor (which is constrained). The above formulation is a specific

statement of the problem to be solved from the more general problem statement presented

in Section 2.3.
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4.2 Mathematical Problem Formulation

The mathematical formulation of the optimization problem can then be posed as:

Minimize maxlll 2  (Objective Function) (107)

subject tosubject (Nominal Stability), (108)A(A - BK) < 0

maxIlrII 2 < 3.5mm (Nominal Performance), (109)

Ir(t n,)lj<0.lmm (Nominal Performance), (110)

firs (G(jow)) < 1 (Robust Stability), ( 111 )

Irr (G(j0))< I (Robust Performance), (112)

and

db mm
- < 1- (Actuator Limits), (113)
dt sec

where r(t) = [(t) r7(t)]T and b= [fb. rib2 4b3 4b4 ]T. The symbols A and B denote

the state-space matrices of the coupled plant dynamics of Equations ( 52 ) and ( 53 ). The

symbol G is defined as the closed-loop centrifuge rotor system as shown in Figure 3-20

where the uncertainty is in the spin rate, rotor mass, and rotor inertia as defined in Section

4.1. In this formulation, the peak of the translational response of the rotor is minimized.
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4.3 Three Stage Solution Procedure

The controller design task is broken into three separate stages. This is done to

reduce the number of degrees-of-freedom and constraints in the optimization problem.

This approach is called "constraint relaxation" in the literature [41]. Since the equations

of motion of the plant can be easily decoupled (see Section 2.1), it is possible to design a

controller for the translational equations of motion (Equation ( 54 )) and a controller for

the tilting equations of motion (Equation ( 55 )) separately, making up the first two stages

of the design. The third stage then involves designing a controller for the coupled

dynamics (Equations ( 52 ) and ( 53 )), using the controllers resulting from stage 1 and

stage 2 as a starting point. Stage 3 is used to fill in the cross terms of the controller as

shown in Equation ( 117 ).

The final controller has the structure

b = Kx (114)

where

b = [b, 14 2  b3 ýb4,]T (115)

x=[f1 0, 0, " /0-¢ 'f ; t fr7 fo , fo, (116)

and

=[ Ktran2l 6  K _crossl2x6 (
K -cross22x 6 K-tit 2x 6 .(117)
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K_tran is designed in stage 1, Kjtilt is designed in stage 2, and K-crossl and K_cross2

are designed in stage 3. Overall, the controller design has 48 degrees of freedom (the

control gains of the K matrix), however, breaking the design task into three stages, it is

re-formulated as three separate optimization problems having 12, 12, and 24 degrees of

freedom, respectively. This reduction of the problem size allows the optimization routine

to converge more quickly and reliably.

4.3.1 Stage 1

As mentioned in Section 4.3, stage 1 involves the design of Ktran. After stage 1

is complete, the controller has the structure

K=[K K-tran2x6 02x6 18
K =[02x6 02x6 (118)

The objective of stage I is to find Ktran such that the peak translation of the

rotor is minimized, while ensuring that the problem constraints are met. The peak

translation is defined by the maximum translation of the rotor during time domain

simulation. The scenario simulated includes a spin-up from 0 to the maximum spin rate.

The maximum spin rate is reached in 1800 seconds and the rotor continues to spin at this

rate until the simulation ends at 2500 seconds. The disturbance acting on the plant is the

disturbance resulting from the rodents being stationary in positions causing the largest

imbalance in the rotor (see Section 2.1). In addition to minimizing the translation, the

constraints in Equations ( 108 ) - ( 113 ) must be met as well. The mathematical

formulation is presented in Section 4.3.1.1.
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4.3.1.1 Stage 1 Problem Formulation

Minimize maxIldI2 (Objective Function) (119)

subject tosubject (Nominal Stability), (120)A(A - BK) < 0

maxllrII 2 < 3.5mm (Nominal Performance), (121)

Ir(tfi,)I<0.lmm (Nominal Performance), (122)

iu, (G(jw)) < 1 (Robust Stability), (123)

tu. (G(jQw)) < 1 (Robust Performance), (124)

and

db mm
-<1- (Actuator Limits) (125)
dt sec

where r(t) = [4(t) 77(t)]T and b =[ý, [ 7b62] . The symbols A and B denote the state-

space matrices of the full coupled dynamics in Equations ( 52 ) and ( 53 ). The coupled

dynamic equations are used to check nominal stability to ensure that the controller will

not be unstable for the coupled system when stage 3 of the design process is reached.

The robust stability and robust performance measures must be met for the range 0 < w0 <

(0 max and 60% rotor mass uncertainty from the nominal value. G is defined as the closed-

loop centrifuge rotor system as shown in Figure 3-20 where the uncertainty is in the spin

rate and rotor mass as defined above.
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4.3.1.2 Stage 1 Design Loop Results

The constrained optimization problem was solved using the Matlab function

fmnincon [38]. The initial guess to start the optimization process is Ktran = 02x6. The

optimization took over 1000 iterations to yield the final solution which is presented in

this section.

From Figure 4-1, it is apparent that the closed-loop system achieves nominal

stability since all of the poles lie to the left of the jw-axis. The poles that appear to lie

near the jw-axis are the result of the modified integrators that were appended to the

system. Since the modified integrators add poles at s = -0.0003 to the open-loop system,

these poles appear to be quite near the imaginary-axis, but are in the left half plane

(LHP).

Pole-Zero Map
- -------------- -- --.. ........ - ---------

4 X

a X X

2

X

2- X

-3 x XX

-O.35 -0-3 -0.25 -0-2 -015 -0.1 -ur0S 0 005
Real Axis

Figure 4-1. Stage 1 - Nominal Stability
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Figure 4-2 shows the translation of the rotor when simulated under the conditions

described in Section 4.3.1. The peak translation of the rotor is well under the maximum

allowable translation 3.5mm. In fact, the peak translation is 2.52mm. Further, the

steady-state translation of the rotor is less than 0.10mm satisfying the requirement for

steady-state error (the constraint imposed on the final value of rotor translation).

x 10.3 Rotor Translation

3.5 3 Max Allowable Translation

3
E

S2.5 - - - 2 .52 m m

= 2,C)

2-

S1.5
0

1

0.5 05 0.10 MM

0 500 1000 1500 2000 2500
Time(s)

Figure 4-2. Stage 1 - Rotor Translation
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The steady-state error that is present in the response is due to the modified

integrators being used in the controller (see Section 3.5). Recall that in the MIMO case

steady-state error for a step input can be expressed as

Ile,,l 1_ IIF(s = 0)l1,,llr, z ll. (126)

In the case of the centrifuge rotor, the symbol F denotes the closed-loop transfer

function from the rodent disturbance to rotor translation. The closed-loop centrifuge

rotor system for stage I yields

le,1_: 0.00 -0.0021 l i0.1 =0.0078 m,(17
IesI _ - 0.00021 - 0.0000 10.310.0021 O.OOO~O.3 ~=O.0008m,(127)

where the maximum size of the elements in the vector r is 0.3. Since the maximum size

of the steady-state error is 0.000078 m in each direction (ý and rI), the upper bound on

the translation is (0.0000782 + 0.0000782)1/2 = 0.0001 103m. From Figure 4-2, it is seen

that this relationship provides a good upper bound. The actual steady-state error is

slightly less than 0.0001m.
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Figure 4-3 indicates that the closed-loop system maintains stability for 60% mass

uncertainty over the range 0 < w < a since the upper bound of p. < I at all frequencies.

The interval for (o was divided into several intervals to evaluate robust stability as shown

in Section 3.4.3. The plot of robust stability presented is the interval with the highest

peak for the upper bound of l..

Upper Bound on IL - Robust Stability
60% Mass Uncertainty

0.9 Robust Stability is

0.8 achieved (p<l)

0.7-

0.6

S0.5-

0.4

0.3

0.2

0.1 -

0
10"0 10-2 10 102

Frequency (rad/sec)

Figure 4-3. Stage 1 - Robust Stability
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The transfer function evaluated to analyze robust stability is the transfer function

from uA to yA shown in Figure 4-4. The uncertainty A is normalized to 1, and it

represents the uncertainty present in the rotor mass and rotor spin rate. The symbols D

and D-1 are as specified in Section 3.4 and represent scaling matrices used by the

structured singular value.

A
UA YA

D-1

FI I

Figure 4-4. Block Diagram for Evaluating Robust Stability
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Figure 4-5 indicates that the closed-loop system achieves the performance

objective for 60% mass uncertainty over the range 0 < o < oma since the upper bound of

gt < I at all frequencies. The interval for o. was again divided into several intervals. The

plot of robust performance presented is for the o. interval with the highest peak for g.

Upper Bound on 1. -Robust Performance
60% Mass Uncertainty

0.9 Robust Performance

0.8 is achieved (p<1)
0.7

0.6 -,--

=i 0.5-

0.4

0.3

0.2

0.1

10" 10- 10 102
Frequency (rad/sec)

Figure 4-5. Stage 1 - Robust Performance

The robust performance objective was to limit rotor translation < 3.5mm for a

disturbance of maximum amplitude (as in the time domain simulation) and frequency

content from DC to 0.0001 Hz (0.000628 rad/sec). This performance objective is

formulated by appending weighting functions to the unweighted plant as in Section 3.4.2.
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The weighting functions are appended to the plant as shown in Figure 4-6 to

normalize the performance objective as stated above from d to e to a performance

objective from d' to e' as shown in Figure 4-6. The transfer function evaluated for robust

performance is [uA d'IT _ [yA e']T.

A

UA YA

= in VKut

K -

Figure 4-6. Weighting Functions for Robust Performance
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The weighting functions used to normalize the performance objective are

presented in Figure 4-7 and Figure 4-8 where

W1 [WI , (128)

and

= [w.. ] (129)

The weighting function rolls off near 0.000628 rad/sec since the performance

objective is to reject disturbances with frequency content less than 0.0001 Hz (0.000628

rad/sec). The magnitude of the weighting function is 0.3 is since the largest expected

disturbance has a magnitude of 0.3.

Stage 1 Weighting Functions- Win
0 .3 5 . . .... ... ................ _,

0.3

0.25

S0.2

E 0.15

0.1

0.05

0.-6 -4 -2 0 210 10 10 10 10
Frequency (rad/sec)

Figure 4-7. Stage 1 Weighting Functions - Input Weight
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Figure 4-8 shows the weighting function used to normalize the output to 1. Since

the largest allowable rotor translation is 3.5mm or 0.0035m at all frequencies, the

weighting function has the magnitude 285.7.

Stage 1 Weighting Functions- Wout
500

450

400-
350

S0(1/0.0035 m) =285.7 S300-

"o 250 S200

150

100

50

106 10-410 100 102

Frequencv (rad/sec)

Figure 4-8. Stage 1 Weighting Functions - Output Weight
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Figure 4-9 shows that in the time domain simulation the actuator saturation

constraints of 1mm/s (0.001m/s) are not exceeded. By avoiding actuator saturation, the

linearity of the system is preserved. This is important because linear analysis results

(such as robust stability and robust performance) are not valid if the actuator constraints

are saturated since a system with saturation is not linear.

x 1o.3 Commanded Mass Rate - Constraints

1 • •1rate

0.82 rate
Supper bound

.• .6lower bound

o> 0.4

, 0.2
U)

-0.2

E -0.4
E
0 U-0.08

-0.8
-1

0 500 1000 1500 2000 2500
Time(s)

Figure 4-9. Stage 1 - Actuator Constraints

It is seen that all of the constraints are met in stage I and the peak rotor translation

is minimized.
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4.3.2 Stage 2

As stated in Section 4.3, stage 2 involves the design of Kjtilt. After stage 2 is

complete, the controller has the form

K K - tran2x6  02x6 1
L 02x6 K - tilt2x6 (

The objective of stage 2 is to find Ktilt such that the peak tilt of the rotor is

minimized, while ensuring that the problem constraints are met. The peak tilt is defined

by the maximum tilt of the rotor during time domain simulation. The scenario simulated

is the same as that in stage 1. In addition to minimizing the tilt, the stability, robustness,

steady-state error, and actuator constraints must be met as well. The mathematical

formulation is presented in Section 4.3.2. .
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4.3.2.1 Stage 2 Problem Formulation

Minimize maxjj¢j1 2  (Objective Function) (131)

subject tosbe t (Nominal Stability), (132)A(A - BK) < 0

maxII 2 < 0.6mrad (Nominal Performance), (133)

kf(tlf,)I<0.lmrad (Nominal Performance), (134)

,ur, (G(j1)) < 1 (Robust Stability), (135)

Plr (G(jo)) < 1 (Robust Performance), (136)

and

db<1mm (Actuator Limits), (137)
dt sec

where (t) = [,(t) ¢ (t)]rand b =[kb 3  b4 ]T. The symbols A and B denote the state-

space matrices of the full coupled dynamics in Equations ( 52 ) and ( 53 ). The robust

stability and robust performance measures must be met for the range of 0 < 0) < .max and

30% independent inertia uncertainty in Ld and 1. This inertia uncertainty will be

increased to 45% in stage 3. G is defined as the closed-loop centrifuge rotor system as

shown in Figure 3-20 where the uncertainty is in the spin rate and rotor inertia as defined

above. The tilt of the rotor is not constrained in Equations ( 108 ) - ( 113 ) since in the

coupled system it contributes a small amount to the translation. However, that is not the

case in the uncoupled system used for stage 2 of the controller design, so the tilt is
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constrained to be < 0.6 mrad (which would contribute 0.35mm of translation in the

coupled system or 10% of the maximum allowable translation).

4.3.2.2 Stage 2 Design Loop Results

The constrained optimization problem was solved using the Matlab function

fmnincon [38]. The initial guess to start the optimization process is Ktilt = 02x6. The

optimization took over 1000 iterations to yield the final solution which will be presented

in this section.

From Figure 4-10, it is apparent that the closed-loop system achieves nominal

stability since all of the poles lie to the left of the jw-axis. As in Figure 4-1 the poles that

appear to lie near the jw-axis are in the LHP and are the result of the modified integrators

that were appended to the system.

Pole-Zero Map
5,,

4 X

3 X X

2
x

U -- -----_ -----------------------------.. ... ... ... ... .. X ...

X
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-4

-04 -0.3 -0.2 -01 0
Real Axis

Figure 4-10. Stage 2 - Nominal Stability
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Figure 4-11 shows the tilt of the rotor when simulated under the conditions

described in Section 4.3.1. The peak tilt of the rotor is less than the maximum allowable

tilt of 0.6mrad. In fact, the peak tilt is 0.54mrad. Further, the steady-state tilt of the rotor

is less than 0.10mrad, satisfying the requirement for steady-state error (the constraint

imposed on the final value of rotor tilt).

X 10 -4  Rotor Tilt
8,,

7-

6
5 Max Allowable Tilt

•- 5 0.54 mr.. '

4-a

0
3-

2

0 500 1000 1500 2000 2500
Time(s)

Figure 4-11. Stage 2 - Rotor Tilt
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Figure 4-12 indicates that the closed-loop system maintains stability for 30%

inertia uncertainty over the range 0 < w < wmax since the upper bound of It < 1 at all

frequencies. Again, the interval for (o was divided into several intervals to evaluate

robust stability as shown in Section 3.4.3. The plot of robust stability presented is the

interval with the highest peak for the upper bound of [t. The transfer function evaluated

to analyze robust stability is the same as that in Figure 4-4, but the uncertainty block

A represents uncertainty in the rotor inertia and rotor spin rate. The plant is the tilting

dynamics in Equation ( 55 ) and the controller is Ktilt.

Upper Bound on I. - Robust Stability
30% Inertia Uncertainty1

0.9

0.0 Robust Stability is

0.7- achieved (pt<l)

0.6-40.5-

0.4

0.3-

0.2

0.1

0 4 2 0I

10 0. 10-2 100 102
Frequency (rad/sec)

Figure 4-12. Stage 2 - Robust Stability
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Figure 4-13 shows that the closed-loop system achieves the performance objective

for 30% inertia uncertainty over the range 0 < (o < (0 max since the upper bound of g- < I at

all frequencies. The interval for w was again divided into several intervals. The plot of

robust performance presented is for the o) interval with the highest peak for the upper

bound of g.

Upper Bound on p. - Robust Performance
30% Inertia Uncertainty

0.9

0.8 Robust Performance

0.7 is achieved (pt<1)
0.6 -

i0.5-

0.4

0.3"

0.2-

0.1

104 10-4 10"2 100 102

Frequency (rad/sec)

Figure 4-13. Stage 2 - Robust Performance

The robust performance objective in stage 2 was to limit the tilt of the rotor <

0.6mrad for a disturbance of maximum amplitude (as in the time domain simulation) and

frequency content from DC to 0.0001 Hz (0.000628 rad/sec). This performance objective

is formulated by appending weighting functions to the unweighted plant.
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The weighting functions are appended to the plant as shown in Figure 4-6. Again

the transfer function evaluated is [uA d']T _ [yA e']T from Figure 4-6. The weighting

functions used to normalize the performance objective for stage 2 are presented in Figure

4-14 and Figure 4-15 where

W W"Win 138 )

and

S= W [,I, (139)

The weighting function for the input to the system rolls off near 0.000628 rad/sec

since the performance objective is to reject disturbances with frequency content less than

that. The magnitude of the weighting functions at low frequencies is 0.00033 since that

is the magnitude of the largest expected disturbance in the frequency range.

X 10-3 Stage 2 Weighting Functions - Win

3-

2.5

2- S-2

•1

0.5

0 -

100 10 10

Frequency (rad/sec)

Figure 4-14. Stage 2 Weighting Functions - Input Weight
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Figure 4-15 shows the weighting function used to normalize the output to 1.

Since the largest allowable rotor tilt is 0.6mrad or 0.O006rad at all frequencies, the

weighting function has the magnitude 1666.7.

Stage 2 Weighting Functions - Wout
2500-,,

2000

(1/0.0006 rad) = 1666.7

-0

- 1500
U)

M1000

500

0 1- - - -- --------- -----

10-6 10-4 10-2 100 102

Frequency (rad/sec)

Figure 4-15. Stage 2 Weighting Function - Output Weight
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Figure 4-16 shows that in the time domain simulation, the actuator saturation

constraints of 1mm/sec or 0.001m/sec are not exceeded. In fact, the mass rates are far

from the saturation limits. The lower plot is a closer view of the mass rates. By avoiding

actuator saturation, the linearity of the system is preserved.

"-" X 10-3 Commanded Mass Rate- Constraints
1 I1

n 0.bt3 rate

S0 104 rate
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uper bound
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"-" x 10-5  Commanded Mass Rate (Zoom in)

o,%3 rate1

r~o,'%4 ratel
S2

0)

E
E -2 ... '

a 0 500 1000 1500 2000 2500
Time(s)

Figure 4-16. Stage 2 - Actuator Constraints

It is seen that all of the constraints are met in stage 2 and the peak rotor tilt is

minimized.
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4.3.3 Stage 3

As mentioned in Section 4.3, stage 3 involves the design of Kscrossl and

K_cross2. These sub-matrices are designed simultaneously allowing for 24 degrees of

freedom (12 for each Kcross matrix) in the stage 3 problem formulation After stage 3

is complete, the controller has the form

K K Ktran2,6 K crossl126(

K = cross22x6  K - tilt2x6  (

The objective of stage 3 is to find K_crossl and Kcross2 such that the peak

translation of the rotor is minimized, while ensuring that the problem constraints are met.

Further, it is desirable to increase the amount of inertia uncertainty that the system can

tolerate. The requirement for inertia uncertainty is increased to 45% uncertainty in both

Id and I. In addition to minimizing the translation, the constraints in Equations ( 108 ) -

( 113 ) must be met as well. The mathematical formulation is presented in Section

4.3.3.1. This formulation is the same as formulation in Section 4.2 since stage 3 is the

last stage in the design process and all problem constraints must be met for the system

with coupled dynamics.
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4.3.3.1 Stage 3 Problem Formulation

Minimize maxlrlI2  (Objective Function) (141)

subject tosbe t (Nominal Stability), (142)A(A - BK) < 0

maxIIiIr < 3.5mm (Nominal Performance), (143)

Ir(tf,,, )]<0.lmm (Nominal Performance), (144)

,urs (G(ja)) < I (Robust Stability), (145)

Prp (G(jo)) < I (Robust Performance), (146)

and
db mm
-- < 1- (Actuator Limits), (147)
dt sec

where r(t) = [(t) q(t)]T and b =[ rb2 4b3 b4 ]T . The symbols A and B denote

the state-space matrices of the full coupled dynamics in Equations ( 52 ) and ( 53 ). The

robust stability and robust performance measures must be met for the range of 0 < o <

(Dmax, 45% of rotor inertia uncertainty in both I and Id, and 60% rotor mass uncertainty

from the nominal value. G is defined as the closed-loop centrifuge rotor system as shown

in Figure 3-20 where the uncertainty is in the spin rate, rotor mass, and rotor inertia as

defined above.
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4.3.3.2 Stage 3 Design Loop Results

The constrained optimization problem was solved using the Matlab function

finincon [38]. The initial guess to start the optimization process is Kcrossl = K_cross2

= 02x6. The optimization took over 1000 iterations to yield the final solution which will

be presented in this section.

From Figure 4-17, it is apparent that the closed-loop system achieves nominal

stability since all of the poles lie to the left of the jo-axis. As in Figure 4-1 and Figure

4-10 the poles that appear to lie near the jw-axis are in the LHP and are the result of the

modified integrators that were appended to the system.

Pole-Zero Map
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Figure 4-17. Stage 3 - Nominal Stability
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Figure 4-18 shows the translation of the rotor when simulated under the

conditions described in Section 4.3.1. The peak translation of the rotor is well under the

maximum allowable translation of 3.5mm. In fact, the peak translation is 2.54mm. It is

seen that the peak translation is slightly higher than the final result of stage 1. This is due

to the fact that the coupled dynamic equations of motion include the contribution from

the tilt in the rotor translation. Further, the steady-state translation of the rotor is less than

0.10mm satisfying the requirement for steady-state error (the constraint imposed on the

final value of rotor translation).

x 1 Rotor Translation4

3.5
Max Allowable Translation

3

S2.5 2 .5 4 m m

Az2
2-

S1.5
0

1

0.5 0.10m

0 p 5

0 500 1000 1500 2000 2500
Time(s)

Figure 4-18. Stage 3 - Rotor Translation



96

Figure 4-19 indicates that the closed-loop system maintains stability for 60% rotor

mass uncertainty and 45% rotor inertia uncertainty over the range 0 < (0 < (imax since the

upper bound of g < I at all frequencies. The interval for (o was again divided into several

intervals to evaluate robust. The plot of robust stability presented is the interval with the

highest peak for the upper bound of gi. The transfer function evaluated is the same as that

evaluated in stage I and stage 2 of the design process, but the plant includes the full

coupled dynamics and the uncertainty is in the rotor mass, rotor inertia, and rotor spin

rate.

Upper Bound on IL - Robust Stability
60% Massl45% Inertia Uncertainty

1 ,

0.9

0.8 Robust Stability is
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0.4

0.3

0.2

0.1 -

0 4 2 2

10 10" 10-" 10' 102
Frequency (rad/sec)

Figure 4-19. Stage 3 - Robust Stability
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Figure 4-20 shows that the closed-loop system achieves the performance objective

for 60% rotor mass uncertainty and 45% rotor inertia over the range 0 < (0 < (0.max since

the upper bound of gi < 1 at all frequencies. Again, the interval for o was again divided

into several intervals. The plot of robust performance presented is for the wo interval with

the highest peak for the upper bound on li. The transfer function evaluated is the same as

that in stage I and stage 2 of the design process, but the plant includes the full coupled

dynamics and the uncertainty is in the rotor mass, rotor inertia, and rotor spin rate.

Upper Bound on IL - Robust Performance
60% MassI45% Inertia Uncertainty
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Figure 4-20. Stage 3 - Robust Performance
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The robust performance objective was to limit the translation of the rotor <

3.5mm for a disturbance of maximum amplitude (as in the time domain simulation) and

frequency content from DC to 0.0001 Hz (0.000628 rad/sec). This performance objective

is formulated by appending weighting functions to the unweighted plant.

The weighting functions are appended to the plant as shown in Figure 4-6 in order

to normalize the performance objective as stated above from d to e to a performance

objective from d' to e'.

The weighting functions used to normalize the performance objective for stage 3

are a combination of the weighting functions for stage I and stage 2. Specifically,

"Win stage I

Winiae3- n~ae 1 /nstage2 ( 148 )
Win.stage 2

and

W.u4 stageI 1
Woutstage3 ""- stageI W. stage 2 ( 149 )

Wout stage 2
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Figure 4-21 shows that in the time domain simulation the actuator saturation

constraints of 1mm/sec or 0.001m/sec are not exceeded. By avoiding actuator saturation

the linearity of the system is preserved.

X 10"- Commanded Mass Rate - Constraints

1 Cbl rate
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Time(s)

Figure 4-21. Stage 3 - Actuator Constraints

It is seen that all of the problem constraints specified in Equations ( 108 ) - (113 )

are met in stage 3 and the peak translational response of the rotor is minimized resulting

in the final design of the ABC.



100

5 Results

In order to further examine of the effectiveness of the ABC design presented in

Chapter 4, analysis was performed using frequency domain techniques to further analyze

stability and time domain simulation (including Monte Carlo simulation) to further

analyze performance. Much of the needed analysis was done during the design phase in

Chapter 4 where nominal stability, nominal performance, robust stability, robust

performance, and actuator saturation are analyzed for the linear system in the design

phase. In this chapter, both stability margin analysis and nonlinear time domain analysis

are performed to further verify the ABC design.

5.1 Stability Margin

Frequency domain stability and performance results are seen in Figure 4-19 and

Figure 4-20 in Chapter 4 for the final ABC. These results guarantee the stability and

performance of the closed-loop system for the range of possible spin rates and for

parametric variations of 60% in the mass of the rotor (M) and 45% in the transverse

moment of inertia (IL) and polar moment of inertia (I1) values. These requirements were

the primary stability constraints of the control design. This section provides further

verification of the stability of the system.

As an additional measure of the stability of the closed-loop system, gain margin

and phase margin are calculated. Gain margin refers to the amount of gain that could be

multiplied by the signal at the point where the loop break is shown while maintaining

closed-loop stability. Phase margin refers to the amount phase that could be added to the

signal at the point where the loop break is shown while maintaining closed-loop stability.
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The control system is analyzed one loop at a time. The loops are shown in Figure

5-1 and Figure 5-2. First, the stability margins are evaluated at the input to the plant (in

the actuator signal). Next, the stability margins are evaluated at the output of the plant (in

the sensor signal).

The stability margins at the input of the plant as shown in Figure 5-1 are

presented in Table 5-1. All stability margins are computed for the plant with a nominal

spin rate, Owmax/2 .

Loop Break

Figure 5-1. Loop Break for SISO Stability Margins at Plant Input

Traditional guidelines for good stability are gain/phase margins of 6dB/30deg or

better. From the results in Table 5-1, it is apparent that the gain margins far exceed 6dB,

with the smallest gain margin in the E3-W Ib3 loop being 18.5dB. The smallest phase

margin, 28.9 deg occurs in the T1b2 -* 7b2 loop. While this is slightly less than 30 deg

phase margin, it is acceptable.
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Gain Margin(dB) Phase Margin(deg)

ýbl - ýbl 34.7 37.5

TIb2- T1b2 31.0 28.9

Wb3 - ý3 18.5 102.7

ýW - W Inf 107.8

Table 5-1. SISO Stability Margins at Plant Input for Nominal Spin Rate

The stability margins at the output of the plant as shown in Figure 5-2 are

presented in Table 5-2. All stability margins are computed for the plant with a nominal

spin rate, Owmax/2 .

0;

Loop Break

Figure 5-2. Loop Break for SISO Stability Margins at Plant Output
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The results in Table 5-2 indicate that the gain margins at the output of the plant

far exceed the traditional guideline of at least 6dB. Similar to the phase margin in the

Tlb2- Tib2 loop at the input of the plant, the il-int -, Tr-int loop at the output of the plant has

a phase margin of approximately 28 deg. Again, while this is slightly less than 30 deg

phase margin, it is acceptable. The notations _dot and _int denote the derivative and

integral of the associated variable.

Gain Margin(dB) Phase Margin(deg)

55.2 Inf

44.9 Inf

30.5 Inf

45.3 Inf

Cdot , ,_dot 43.4 Inf

Tldot - Trldot 37.9 Inf

0udot -•* gdot Inf Inf

4nIdot - O. dot 21.1 Inf

j_int -- _int 36.0 37.5

Tljint -- rLint 35.3 27.9

,_.int r ,int 37.2 83.1

pNint --, oint 43.6 100.2

Table 5-2. SISO Stability Margins at Plant Output for Nominal Spin Rate

Although gain/phase margins were not constrained during the design process, the

resulting system has good gain/phase margins. This is primarily a result of two

constraints that were in the design process. First, the design process required that the

system be robustly stable to large parametric uncertainty in the rotor mass and the rotor
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inertia. Since changing these parameters changes the gain of the plant, the controller had

to be robust to gain uncertainty, yielding acceptable gain margin. Second, the constraints

on the speed of the balancer masses necessitated that the controller gains stayed relatively

small. The gains in the controller gain matrix could not be large values since such values

would cause the controller to command the masses to move at a speed greater that the

saturation speed. Having a low-gain controller corresponds to good stability margins

much like a system with a zero gain controller (no control) would have infinite stability

margins. However, not having a controller is not a reasonable solution since the

controller is needed to meet time domain performance requirements (see Figure 5-4).

5.2 Time Domain Nonlinear Simulation

Time domain performance is analyzed using a simulation as shown in Figure 5-3.

The simulation includes nonlinearities in the coordinate transformation, actuator

constraints (mass rate saturation), and time delays. Also, the plant dynamic equations of

motion are in the fixed (x,y) frame and the sensor measurements are rotated into the

rotating frame via the coordinate transformation following the plant model.
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spin rate

translation
disturbance KTsc

Integrator Plant orTanfm

Mass Rate Derivative Output
Saturation Delay Controller slay

Figure 5-3. Time Domain Simulation

The scenario simulated in this section includes a spin-up of the rotor from a spin

rate of 0 to the maximum spin rate. The maximum spin rate is reached in 1800 seconds

and the rotor continues to spin at this rate until the simulation ends at 2500 seconds. The

disturbance acting on the plant is the disturbance resulting from the rodents being

stationary in positions causing the largest imbalance in the rotor as described in Section

2.1.

First, the performance of the ABC is analyzed by comparing the rotor translation

for the case with no controller and the case where the controller designed in Chapter 4 is

implemented. The results of these simulations are shown in Figure 5-4.
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Figure 5-4. Time Domain Comparison to No Control

It is clear that control is needed to satisfy the requirement of limiting peak rotor

translation to be less than 3.5mm. In fact, with the ABC the peak rotor translation is

reduced from approximately 7.0mm to approximately 2.5mm.

Further, the effect of the specified variations in the rotor mass and inertia was

analyzed through time domain simulation. The scenario simulated was the same as that

described above that was used to compare the rotor translation with the ABC to a case

with no control. In order to analyze the effect of parametric variation on the performance

of the system, the comer cases of the allowed parametric variations were tested. For

instance, the mass of the rotor was set at the nominal value, the nominal value + 60%,

and the nominal value - 60%. Similarly, the inertias of the rotor (ld,Iz) are allowed to

vary independently between the nominal value, the nominal value + 45%, and the

nominal value - 45%. Using these comer cases, 27 different parameter combinations

were tested in simulation. The combinations are listed in Table 5-3. Figure 5-5 shows

the response of all 27 cases tested. The peak rotor translation of the 27 cases varied
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between 2.07mm and 2.87mm, all below the 3.5mm requirement. Also, the translation of

the rotor at steady-state varied between 0.06mm and 0.10mm. This meets the

requirement for steady-state error of 0.10mm or less.

Rotor Translation
x 103  Parametric Variations4

3.5
Max Allowable Translation

-.. .2.87 mm

S 2.5

2 -2.07 mm
F--- S1.5 L

0.5.
0.10 mm

0 500 1000 1500 2000 2500
Time(s)

Figure 5-5. Rotor Translation with Parametric Variations

From Table 5-3 it is seen that the combination of parameter values corresponding

the largest peak rotor translation and the largest steady-state error are when the mass of

the rotor is +60% from nominal, the transverse moment of inertia of the rotor is +45%

from nominal, and the polar moment of inertia of the rotor is -45% from nominal. This

case is highlighted in Table 5-3.
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M (kg) Id (kg- Iz (kg- Peak Translation Steady-State
mA2) mA2) (mm) Translation (mm)nom nom nom 2.53 0.093

-60% nom nom 2.20 0.093
+60% nom nom 2.70 0.076

nom -45% nom 2.47 0.081
-60% -45% nom 2.15 0.087
+60% -45% nom 2.64 0.062
nom +45% nom 2.59 0.098
-60% +45% nom 2.25 0.098
+60% +45% nom 2.76 0.084
nom nom -45% 2.63 0.098
-60% nom -45% 2.28 0.098
+60% nom -45% 2.80 0.087
nom -45% -45% 2.57 0.098
-60% -45% -45% 2.22 0.096
+60% -45% -45% 2.73 0.081
nom +45% -45% 2.69 0.099
-60% +45% -45% 2.33 0.099

nom nom +45% 2.44 0.081
-60% nom +45% 2.12 0.084
+60% nom +45% 2.65 0.060
nom -45% +45% 2.39 0.090
-60% -45% +45% 2.07 0.086
+60% -45% +45% 2.54 0.085
nom +45% +45% 2.50 0.087
-60% +45% +45% 2.17 0.091
+60% +45% +45% 2.66 0.066

Table 5-3. Results of Parametric Variations

The preceding time domain analysis verifies two things. First, it is apparent that

without control the system will not meet the performance requirements of limiting rotor

translation to a peak of less than 3.5mm or a steady-state value of 0.10mm. This verifies

the need for an ABC to improve performance. Second, parametric variations in time
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domain simulation verify that the performance of the system is acceptable subject to the

allowable parametric uncertainty. The system performance is robust to uncertainty in the

plant. The robustness is further verified through Monte Carlo Simulation.

5.3 Monte Carlo Simulation

The performance of the ABC system is further analyzed through Monte Carlo

simulation. The Monte Carlo method, a numerical method of solving problems through

the simulation of random variables and processes [42],[43], has been used to gain insight

into many complex problems in engineering and other fields. The method allows for the

repeated simulation of a given system with an unknown or uncertain input variable.

Repeated random selection of this unknown variable allows one to study how a particular

system's outputs are distributed given a random input.

Five separate Monte Carlo studies were performed to analyze the performance

and robustness of the ABC system subject to uncertainty in the following variables:

rodent motion within the habitats, mass and inertia of the rotor, actuator uncertainty, and

sensor uncertainty.

The Monte Carlo studies were performed under the conditions shown in Table

5-4. 0.1 m/s is assumed to be the maximum velocity of a single rodent.
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Test RandomOutput
Case Input Distribution Disturbance VariableVariables V

Rodent Normal, mean = 0 m/s, Random
Test velocity 3a = 0.1 m/s variable due to Peak rotor
Case 1 RodenttrnlioCase_ direction Uniform, random unit vector rodent motion

Rotor Normal, mean = nominal, Rodents in
Test mass 3y = 60% variation fixed positions Peak rotor
Case 2 Rotor Normal, mean = nominal, for max translation

inertia 3a = 45% variation imbalance
Rodents in

Test Actuator Normal, mean = 1, fixed positions Peak rotor
Case 3 gain 3y = 75% error for max translation

imbalance
Rodents in

Test Sensor Normal, mean = 1, fixed positions Peak rotor
Case 4 gain 3(y = 75% error for max translation

imbalance

Rodent Normal, mean = 0 m/s,
velocity 3c7 = 0.1 m/s
Rodentdirection Uniform, random unit vector

Rotor Normal, mean = nominal, Random
Test mass 3y = 60% variation Peak rotor
Case 5 Rotor Normal, mean = nominal, rodent motion translation

inertia 3a = 45% variation

Actuator Normal, mean = 1,
gain 3a = 75% error
Sensor Normal, mean = 1,
gain 3a = 75% error

Table 5-4. Monte Carlo Test Cases

The results of the Monte Carlo study are shown in Figure 5-6 - Figure 5-10.
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Test Case 1 - Sample Distribution of Rodent Velocity
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2D0

ISO

50

1 -0Z -0105 0 0.05 0.1 O .15Rodent Velociy (rls)
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50
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0 0.5 1 1.5 2 2.5 3 3.5 4
Rotor Transletion (m) X 10'

Figure 5-6. Test Case 1 Results - Random Rodent Motion

It is seen in test case 1, that the system meets the performance requirement for all

1000 runs. This result indicates that the ABC is effectively canceling the imbalance

introduced by rodent motion.
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0Te Cas* 2 - UniI. Oributon of RoItor Mass A similar distribution exists
250 for the inertias of the Rotor

" 15 Mean Translation = 2.5mm

100 Standard Deviation = 0.09mm
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Rotor Translation (m) X 1O,

Figure 5-7. Test Case 2 Results - Random Rotor Mass/Inertia

Similarly, in test case 2, the system meets the performance requirement for all

1000 runs. This result indicates that the system with the ABC controller is robust to

variations in the mass and inertia of the rotor.
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Figure 5-8. Test Case 3 Results - Random Actuator Gain

In test case 3, it is seen that the system meets the performance requirement for

99.4% of the simulations. It is not surprising that it does not meet the performance

requirement in every case since a 75% uncertainty in the actuator gain is quite large.

This allows the balancer mass to be up to 75% away from the position commanded by the

ABC. A success rate of 99.4% is considered acceptable.
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Figure 5-9. Test Case 4 Results - Random Sensor Gain

In test case 4 it is seen that the system meets the performance requirement for

99.0% of the simulations. Similar to test case 3, it is not surprising that it does not meet

the performance requirement in every case since a 75% uncertainty in the sensor gain is

quite large. This allows the sensor to read a displacement with up to 75% error from the

actual displacement. A success rate of 99.0% is considered acceptable.
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Figure 5-10. Test Case 5 Results - All Random Distributions

It is seen in test case 5 that the system meets the performance requirement for all

1000 runs. This result indicates that the ABC is effectively canceling the imbalance

introduced by rodent motion and is robust to simultaneous perturbations in parameter

values, actuator gains, and sensor gains. It is not surprising that the mean translation in

test case 5 is significantly less than that in test cases 2-4. This is due to the fact that the

disturbance in test cases 2-4 was a fixed disturbance where the rodents are stationary in

the worst-case positions. The disturbance in test case 5 is a random disturbance

generated from the random direction and velocity of the rodents. In general, this random

disturbance will be less severe than the fixed disturbance with maximum imbalance.
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6 Concluding Remarks

An ABC meeting desired specifications has been developed for the centrifuge

rotor using a robust constrained optimization approach. This approach is selected

because constraints in the time domain and frequency domain can easily be handled

simultaneously with this method. Other ABC design methods do not allow this freedom.

The effectiveness of the controller has been demonstrated by verifying that the

constraints are met at the final iteration of the design, checking the stability margins of

the resulting system, performing selected time domain tests, and testing the robustness of

the design through Monte Carlo methods. In each case, the performance of the ABC was

acceptable.

In Chapter 2 the problem background was introduced. A description of the

centrifuge rotor system and the ABC system was presented. The equations of motion for

the centrifuge rotor were derived in both the fixed frame coordinate system and the

rotating frame coordinate system. The system block diagram and controller structure for

the ABC were presented.

In Chapter 3 the technical background for the solution of the problem is

discussed. The basics of MIMO control and uncertain systems were presented. These

concepts were used together to analyze system robustness with the structured singular

value. Steady-state error in control systems was also discussed. Finally the robust

constrained optimization approach to control design is presented.

Chapter 4 presented the method used to solve the control problem. This chapter

described the implementation of the robust constrained optimization approach to control

design and how it was applied to design an ABC system. The method was applied in a
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three stage design procedure in order to convert the relatively large optimization problem

into three smaller sub-problems. The results of the controller design are presented at the

end of each individual stage and also at the end of the final design. The application of the

solution method produced a controller meeting the constraints of the problem while

minimizing the translation of the rotor.

Chapter 5 presented further analysis of the control design. The system was

analyzed in both the time domain and frequency domain. Stability margins were

analyzed in the frequency domain and performance was analyzed in the time domain.

Frequency domain analysis verified that the stability margins of the system were

satisfactory. The time domain simulations verified that the controller performance was

robust to parametric uncertainty. The results provided further indication that the control

design was acceptable. Also, the results of the Monte Carlo simulations were presented.

The Monte Carlo results also verified that the control design provided satisfactory

performance.

Future work in the design of an ABC for the centrifuge rotor system could include

the minimization of a different performance measure, such as robust performance or

robust stability. Such a controller would be able to tolerate more uncertainty, but the

performance at the nominal point would suffer as a result. Also, a method could be used

to treat robust performance in the time domain. This would make it possible to consider

transient effects in the robust performance analysis.
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